
Space Time Ray Tracing using Ray
Classification

Matthew Quail

Submitted for the partial fulfilment

of the requirements of the Bachelor

of Science with Honours

November 1996

Department of Computing

School of Maths, Physics, Computing and Electronics

Macquarie University

Abstract

Throughout the history of computer graphics, a very active area of research has been the

attempt to create convincing, life-like images. Ray tracing is a technique for generating

photorealistic images, and can easily support a wide range of natural phenomenon. How-

ever, producing a ray traced image is very expensive; and producing a ray traced animation

is often prohibitively expensive.

This thesis looks at two techniques for efficiently producing ray traced animations;

Glassner’s space time hierarchical bounding volume technique, and my space time extension

of Arvo and Kirk’s ray classification. The results show that my method is more efficient;

however Glassner’s technique has much better memory performance. Based on some of the

ideas of my method, some ways of improving Glassner’s technique are suggested.

Contents

1 Introduction 3

1.1 Salient points of ray tracing . 3

1.2 Spatial search efficiency . 5

1.2.1 Hierarchical bounding volumes . 6

1.2.2 Spatial subdivision . 7

1.2.3 Directional techniques . 7

1.3 Summary . 8

2 Theory 9

2.1 Tracing rays . 9

2.2 Modelling . 10

2.3 Animation . 11

2.4 Camera model . 13

2.5 Space time . 14

2.6 Bounding volumes . 14

2.6.1 Computing bounding volumes . 16

2.6.2 Ray-volume intersection test . 18

2.7 Glassner’s space-time scheme . 18

2.7.1 Building the hierarchy . 19

2.7.2 Ray/scene intersection . 20

2.7.3 Other details . 21

2.8 Ray classification . 21

2.8.1 Direction Cube . 21

2.8.2 Arvo and Kirk’s algorithm . 22

2.8.3 Five dimensional adaptive subdivision 24

2.9 Space time ray classification . 25

1

2.9.1 Smart T division . 26

2.9.2 Pruning . 26

3 Design 27

3.1 Requirements . 27

3.2 Analysis of requirements . 28

3.3 Design . 28

3.4 Implementation . 31

4 Implementation Issues 32

4.1 Linearisation of motion . 32

4.1.1 Computing the extrema of a sphere 33

4.2 Box/surface testing in Glassner’s method 34

4.3 Object/beam classification . 36

4.4 Comments . 37

5 Empirical investigation 38

5.1 Testing . 38

5.2 Results . 40

6 Discussion 46

6.1 Theoretic comparison . 47

6.2 Empirical comparison . 48

6.3 Comparison summary . 48

6.4 Quality of work . 49

6.5 Further work . 50

7 Conclusion 51

Bibliography 52

A Availability 55

2

Chapter 1

Introduction

Ray tracing is a powerful technique for image synthesis, that is, creating a 2D image of a 3D

world. Ray tracing can also simulate a wide variety of real world effects, producing images

that look like a real photograph, called photo-realistic images. However, ray tracing is much

more computationally expensive than conventional techniques, and creating an animation

using ray tracing is often impractical.

The aim of this thesis is to investigate two methods for the efficient ray tracing of

animations. The first is Glassner’s space-time hybrid hierarchal bounding volumes/space

subdivision method [1]. The second method is my space-time extension of Arvo and Kirk’s

ray classification [2].

1.1 Salient points of ray tracing

The term ‘ray tracing’ does not refer to a specific algorithm, but to a group of algorithms

[3]. The two efficiency methods being investigated belong to one class of these algorithms.

However, it will be necessary to give an overview of the whole of the ray tracing field (and

rendering in general) to set the context for the class of algorithms that I will look at.

A framework is needed for conceptualising and describing an animation in computer

graphics; this framework follows along the lines of how a motion picture is captured in real

life. The content of a scene is made up of the objects in that scene plus the behaviour of

the “virtual camera” that records the scene (a detailed explanation of the camera model

used is given in Section 2.4). The scene is rendered into a set of frames or images, where an

image is a rectangular array of pixels. The image (or image plane) is equivalent to the film

plate of a real camera. Rendering an animation is the process of determining the colour of

3

x
"center
of focus"

image plane
x’

x’’

x’’

Light Source

Figure 1.1: The colour of pixel at x is found by I(x, x′).

each pixel in each image.

An image in a camera is formed by the light that enters the camera and strikes the

film. If the light in a scene can be modelled on a computer, then it is possible to create a

synthetic image of a real scene. The light that hits a pixel on the image plane determines

that pixel’s colour1. This light can be determined using the rendering equation, developed

by Kajiya [4] (see Figure 1.1),

I(x, x′) = g(x, x′)
[
ε(x, x′) +

∫

S
ρ(x, x′, x′′)I(x′, x′′)dx′′

]

where:

• I(x, x′) is the light that leaves point x′ and arrives at point x.

• g(x, x′) is a ‘geometry’ term describing occlusion information between x and x′.

• ε(x, x′) is the radiance of the emitted light from x′ to x.

• ρ(x, x′, x′′) is related to the light from points x′′ that reflects from x′ towards x.

Note that the rendering equation is recursively used to find the light reflected from the

scene (points x′′) to x via x′.

In practice, however, the rendering equation is extremely hard to solve. Ray tracing

provides an approximation to the rendering equation. The approximation can be repre-

sented like this:

I(x, x′) ≈ trace ray(x, x′)

trace ray(x, x′) = g(x, x′)


ε(x, x′) +

∑

x′′∈I
ρ(x, x′, x′′)trace ray(x′, x′′)




1A concrete meaning to colour and light is not relevant to the aim of this thesis. I will simply talk

about colour in an intuitive sense.

4

x
x‘

Figure 1.2: Intersection points of ray with scene.

where I is the set of “interesting” points, like light sources2 and points that cause mirror

like reflection.

To find the colour of a pixel in the image using ray tracing, a ray is traced from the

pixel into the scene, to find the intersection point x′. Such a ray is called a primary ray.

The evaluation of the rendering equation will recursively cause more rays to be traced.

Each ray has an associated generation, which is its depth in the recursion. The application

of the rendering equation is commonly called shading.

To summarise, a ray is traced into the scene to find the point x′, which is the closest point

of intersection of the ray with the objects in the scene. Once x′ is found, the (approximated)

rendering equation can be evaluated. Given all the points of intersection of a ray with the

scene (Figure 1.2) , finding x′ means searching for the closest point. In this way, the process

of tracing a ray is a spatial search for the closest intersection.

1.2 Spatial search efficiency

A commonly reported figure is that 95% of rendering time is spent doing the spatial search

for the closest intersection [5]. Improving this search will greatly improve the time taken

to render the scene. The naive way to do this search is to test the ray against every object

in the scene, then find the point that was the closest. This is called an exhaustive search,

and has linear time complexity in the number of objects.

Arvo and Kirk broadly classified the acceleration techniques that can be applied to ray

tracing [6]:

• Faster intersections. These techniques aim to reduce the average cost per ray. They

can be further classified:

– Try to obtain faster ray-object intersections.

2Rays that are traced to light sources are called shadow rays.

5

– Fewer ray-object intersections.

• Create fewer rays.

• Attempt to group bundles of rays together as generalised rays.

By using ‘generalised rays’, the concept of a ray is replaced with a more general entity

such as a cone or pencil. Although the essential concepts of ray tracing remain the same,

it has the advantage of being able to consider many rays at once.

There are several ways to obtain ‘faster intersections’. Efficient routines for computing

the intersection of rays with objects is the most obvious, and can be used by any imple-

mentation. Complex objects could also be surrounded with a bounding volume that offers a

faster intersection test than the object. In this way, many rays could be dismissed without

having to intersect them with the more complex bounded object.

Each ray traced may spawn more rays when it is shaded. This forms what is called

a ray tree. Super-sampling may be used to reduce aliasing in images; resulting in many

rays being traced per pixel. Two ways for creating ‘fewer rays’ are adaptive ray tree depth

control and statistical optimisations for super-sampling. Ray tree depth control ensures

that the rendering equation is not infinitely recursed; two ways of controlling the depth

are to stop when the tree gets to some hard limit, or to stop when the contribution of a

ray to the colour of the primary ray falls below some threshold.

The category ‘fewer ray-object intersections’ consists of techniques that try to reduce

the need for an exhaustive search for an intersection. Given a ray, these techniques return

a subset of the objects in the scene, which contains (at least) all the objects that the ray

might intersect.

Most ray tracing acceleration techniques fall into this category, including bounding

volume hierarchies, space subdivision and directional techniques. The remainder of this

section will give an overview of these three schemes.

1.2.1 Hierarchical bounding volumes

Using bounding volumes may decrease the cost of intersections, but it does not reduce

their number; bounding volumes are essentially a ‘faster intersections’ optimisation. At

best, bounding volumes will reduce the computation by a constant amount, but they do

not improve the linear time complexity of an exhaustive search for an intersection. [6].

Rubin and Whitted [7] introduced the concept of nested hierarchies of bounding vol-

umes, which theoretically improves the search to logarithmic complexity in the number of

6

objects. By placing a parent bounding volume around a group of child bounding volumes,

we can reject all the children objects from consideration if the ray doesn’t intersect the

parent bounding volume. Volumes can be arbitrarily nested, creating a hierarchy (or tree)

of volumes, with a volume bounding the scene at the top and the objects themselves at

the leaves.

It is now a question of how a hierarchy is built. It is not hard to see that some hierarchies

will be better than others; one that does most of the pruning near the root of the tree will

be able to dismiss much larger groups of objects. The hierarchy construction technique that

will be discussed in this thesis is Glassner’s hybrid adaptive space subdivision/bounding

volume technique [1], which is presented in Chapter 2.

1.2.2 Spatial subdivision

Bounding volume hierarchies subdivide groups of objects, whereas spatial subdivision sub-

divides the space around the objects. The bounding box for the scene is divided up into

smaller, axis-aligned boxes called voxels. Each voxel is associated with a candidate list : all

those objects that are inside that voxel.

To intersect a ray with the scene, it is necessary to consider only those objects in the

candidate lists of the voxels the ray passes through. Furthermore, if the voxels are visited

in the order in which they are pierced by the ray, many intersection tests can be avoided

once an intersection has been found [8].

There are two ways to subdivide space: uniformly and non-uniformly. Non-uniform

subdivision has the advantage that it can increase the level of subdivision in regions with

a high density of objects, but it is often a complex procedure to step from one voxel to

another along the path of a ray. It is easy to step from one voxel to another when using

uniform subdivision, but subdivision is independent of the layout of the scene, and is a

disadvantage for scenes with non-uniform object distribution.

Spatial subdivision is a top down approach; the scene is divided from the top to group

objects at the bottom. Hierarchical bounding volumes builds its structure from the bottom

up; objects are grouped together progressively until the whole scene is bounded.

1.2.3 Directional techniques

Directional techniques attempt to take the direction of rays into account when constructing

candidate sets. To see how this differs from other approaches, consider how ray direction is

7

Directions Box Beam

Figure 1.3: A beam in 3D.

used with spatial subdivision. Given each ray, the direction is used to find the set of voxels

that the ray passes through. This process is done for each ray. Directional techniques take

this consideration of direction out of the ‘inner loop’, and tries to do these calculations

once.

The directional technique that is used here is Arvo and Kirk’s ray classification [2]. A

ray can be described as an origin and a direction. The origin of any ray will lie within the

bounding box B ⊂ R3 of the scene. The direction can be described by a point on the unit

sphere S2. This means that rays can be paramaterised by elements of the 5-space B × S2.

As in 3D subdivision, this 5-space could be subdivided into small cells Ci ∈ B × S2.

Given that Ci is small enough, these cells parameterise rays with similar origins and similar

directions. Such a set of rays defines a beam in 3D, as in Figure 1.3 (adapted from [6]).

A candidate set of objects is associated with each cell Ci, which is precisely those

objects that are inside that beam. To intersect a ray with the scene, the ray is classified as

to what cell Ci it belongs, and then the objects in that cell are search for an intersection.

1.3 Summary

This chapter introduced those background concepts that are required for the remainder

of the thesis. Chapter 2 will give a formal treatment of the theory that is required to

implement both efficiency schemes. Chapter 3 will cover the design of the implementation,

and Chapter 4 will detail the issues that arose from the implementation of the theory.

8

Chapter 2

Theory

The aim of this thesis is to compare two (animation) ray tracing efficiency schemes; Glass-

ner’s technique and my extension of Arvo and Kirk’s. This chapter will describe the

theoretical and technical details necessary to implement both schemes. An excellent intro-

duction to the many other technical aspects of ray tracing is given by Glassner [9].

2.1 Tracing rays

A ray R is defined as all the points

R ≡
(

x y z
)T

= o + du, u > 0 (2.1)

where o =
(

ox oy oz

)T
is the origin of the ray, and d =

(
dx dy dz

)T
is the direction

of the ray. The direction d is unit length for primary rays, but we will see how this may

not be true for rays in general.

The method for intersecting a ray with a surface depends on how that object is rep-

resented. The surface normal vector at the intersection point must also be obtained, for

shading purposes. An example of sphere/ray intersection will be given here. Methods of

intersecting rays with other surfaces can be found in [9].

The implicit equation for a sphere is

(x− x0)
2 + (y − y0)

2 + (z − z0)
2 − r2 = 0 (2.2)

where Sc =
(

x0 y0 z0

)T
is the centre of the sphere, and r is the radius. Substituting

x,y and z in Equation (2.1) into Equation (2.2), we obtain

(ox + dxu− x0)
2 + (oy + dyu− y0)

2 + (oz + dzu− z0)
2 − r2 = 0

9

which is a quadratic equation in u. This can be solved using the quadratic equation;

yielding no real solution (ray missed sphere), one real solution (ray grazed sphere, which

is ignored), or two solutions u0 and u1. Finding the smallest of these values greater than

zero will give us the closest intersection of the ray with the sphere. Substituting this value

of u into Equation (2.1) gives us the point p where the intersection occurs. The surface

normal of the sphere at this point is given by the direction of p− Sc.

2.2 Modelling

A common practice in computer graphics is to design an object in some local co-ordinate

system, and then place the object in the world co-ordinates of the scene with a modelling

transformation. I will use the notation for transformations of Foley et al [10].

A transformation M is a 4× 4 matrix representing a linear transformation,

M =


 A T

0 0 0 1


 , (2.3)

where A is a 3 × 3 affine matrix, and T is a 3 × 1 matrix representing a translation.

Transforming a point xL
1 in local co-ordinates by M results in the point in world co-

ordinates

xW = M · xL.

To transform a point from world to local co-ordinates, M−1 is used instead. Transforming

a normal aL to world co-ordinates by M gives [11]

aW = (M−1)T · aL.

Because of the form of M , a transformation will never change the homogeneous co-ordinate

of xL or aL.

Transforming a point xL by M1 then by M2 is given by the concatenation of the two

matrices:

xW = M2 · (M1 · xL)

= (M2M1) · xL.

1The point
(

x y z
)T

can also be specified as the homogeneous point
(

x y z 1
)T

. Notation

will be abused slightly, and we will assume that either form can be converted to the other implicitly.

10

The inverse of the concatenation of matrices is

(Mn · · ·M2M1)
−1 = M−1

1 M−1
2 · · ·M−1

n .

A modelling transformation is normally created by the concatenation of elementary trans-

formations. Elementary transformations are affine transformation (rotations and scales,

for example) and translations. The inverse of an elementary transformation is simple to

compute: the inverse of a rotation is an equal rotation in the opposite direction. So, as

a modelling transformation is built, the inverse can be computed along side it using the

above identity.

Consider some surface S that is made up of the set of points S ≡ {xL}. The surface

SW in world co-ordinates that results from transforming S by M is

SW = M · S ≡ {xW} = {M · xL}

A common technique is to store each object in the scene database in local co-ordinates

and associate with each object a modelling matrix that transforms it to world co-ordinates.

To intersect a ray with a world-object, the ray RW is transformed to local co-ordinates by

M−1, giving

RL = M−1 ·RW ≡ M−1 · o + M−1 · du.

Note that this may result in a ray direction that is no longer unit length. The ray RL

is intersected with the local-object, resulting in a value u0. This u0 is valid both as the

point along RL that intersects the local-object, and the point along RW that intersects the

world-object. The local co-ordinate normal nL can be transformed to world co-ordinates

by nW = (M−1)T · nL.

Note that in transforming the ray to local co-ordinates, and in transforming the normal

back to world co-ordinates, only M−1 has been used. Once M has been computed, it is

only necessary to store M−1 for use in ray/object intersections. As noted above, M−1 can

be computed while M is being built.

2.3 Animation

There are two sides to animation in computer graphics. One is the interface between

the animator and the scene2. This interface offers a more abstract or human-oriented

2Here, a scene means the whole state of the world during the animation. The state of the animation

at a single instant is a frame.

11

specification of animation. This is typified by inverse kinematics, where an animator could

make a character perform the complex process of walking just by specifying two points and

a speed. Watt and Watt provide a good reference for this side of animation [12].

The other side to animation is the actual rendering of the scene. In this stage, it is

not important how the scene was modelled. Only the explicit movements of the objects

are important. Ray tracing is a rendering process, so it is concerned only with this aspect

of animation. In this section, I will present a method for specifying an animation in this

concrete manner.

The animation of an object in the scene is specified by a dynamic (or temporal) trans-

formation M(t). This has the same form as a static transformation M , except that the

elements of the matrix are functions of time, instead of real numbers. If the animation runs

over the time interval [T0, T1], the elements e of M(t) are e ∈ F = {f |f : [T0, T1] → R}.
Here, e could specify any such function, including piecewise defined functions.

An extra co-ordinate is used to represent the time of a point. The 4-point3
(

x y z t
)T

represents the 3-point
(

x y z
)T

at time t. Equation (2.3) becomes

M(t) =




A(t)

0

0

0

T (t)

0 0 0 1 0

0 0 0 0 1




. (2.4)

By itself, the 3-point
(

x y z
)T

represents a point at any time (or no time).

At any time ti ∈ [T0, T1], M(ti) evaluates to a real valued matrix. This matrix gives

the world co-ordinates position of the dynamic object at ti. Because of the form of M(t),

M(ti) does not change the time co-ordinate of a 4-point. This means that dynamic trans-

formations change an objects position in 3-space, not in time.

In general, a scene is rendered into n evenly spaced frames. At time ti in frame i, the

rays cast have origin
(

ox oy oz ti
)T

and direction
(

dx dy dz 0
)T

. This means

that rays travel instantly through time. At extremely large or small scales, the time

component of the direction could be set to the speed of light in the database, allowing us

to handle relativistic effects [13].

To intersect a ray with a dynamic object, the inverse transformation matrix of the

3This represents the homogeneous point
(

x y z t 1
)T

.

12

C

N

V

U

Look at xsys

f

P

Figure 2.1: The camera model.

object is evaluated based on the time component of the ray, and this real-valued matrix is

used to transform the ray to local co-ordinates, and the normal to world co-ordinates.

2.4 Camera model

The camera model used is adapted from the one suggested in Chapter 1 of Watt and Watt

[12], see Figure 2.1. The animator specifies the camera position C, the ‘focal’ distance to

the image plane f , a ‘look at’ position, an up direction V , and two scale values xs and

ys that determine the size of the view window. From this information is determined the

image plane normal N , and the ’right’ direction U . Together, the normals N , V and U

and the point P define the camera co-ordinate system.

The camera can be moved dynamically during a scene by associating a dynamic trans-

formation with the camera. The normals N , V and U and the point P can be transformed

at any point in time by M(t), giving the camera orientation at that time. The constants

f , xs and ys can also be specified dynamically as functions f : [T0, T1] →R.

At time ti for frame i, the camera and all the objects could be transformed to their

world positions at that time, and the frame could be rendered using traditional static

ray tracing methods. However, the rendered animation will suffer from temporal-aliasing.

Objects will jump from their position in one frame to their position in the next. Motion

blur can be used to eliminate this effect.

Instead of setting each ray at time ti, rays are initiated at some random time in the

range [ti, ti+1). Several rays are cast per pixel, stochastically sampling across the time

13

Y

X

X

Y

T

Figure 2.2: A moving 2D circle represents a sheared cylinder in 3D.

interval for that frame. This is an example of distributed ray tracing [14].

2.5 Space time

A moving 3D object can be considered as a static 4D object. To explain this, consider a

2D world, where a moving 2D object is a static 3D object. In Figure 2.2, a circle is to be

translated along a line. If a time axis is added, then the path of the circle traces out a

cylinder.

There is a benefit in considering animated objects as static space-time objects. If objects

are considered in a purely 3D sense, then the only information that can be obtained from

them is their position and orientation at a particular time. If they are represented as 4D

objects, then that representation allows the object to be considered simultaneously over

all of its life. A more fundamental explanation of the use of time as a fourth dimension is

given by Taylor [13].

2.6 Bounding volumes

Both Glassner’s method and Arvo and Kirk’s ray classification require the use of the same

type of bounding volumes, called sets of slabs [15]. The details of this type of volume is

presented in this section.

14

P i
^

d near
i

d far
i

Figure 2.3: The set of planes defined by P̂i

Figure 2.4: Sets of slabs with various normals.

An arbitrary plane in 3-space can be described by the implicit equation Ax+By+Cz−
d = 0. This describes a plane with normal vector P̂i =

(
A B C

)T
lying d units from

the origin. Fixing P̂i and allowing d to vary describes all the planes normal to P̂i. From

this set, we can choose two planes that bound an object, as in Figure 2.3. These planes

can be described by the two values dnear
i and dfar

i . The region of space between these two

planes is called a slab, and the normal vector that defines the orientation of the slab is the

plane-set normal.

Consider a set of plane set normals {P̂1, . . . , P̂m}, P̂i ∈ Rn, that spansRn. Each normal

P̂i can be used to define a slab that bounds an object. The intersection of all such slabs

will form a closed bound around the object.

This is shown in Figure 2.4 for R2. An object is bounded in three different ways; with

the normals
(

1 0
)T

and
(

0 1
)T

, with
√

2
2

(
1 1

)T
and

√
2

2

(
1 −1

)T
, and with all

four normals.

A realistic scene may contain thousands or millions of objects, and storing the plane-

15

set normals plus dnear
i and dfar

i for each object would require extraordinary amounts of

memory. Instead, an arbitrary set of plane normals are chosen, and these normals are used

for all objects. Only the pairs (dnear
i , dfar

i) are stored with each object. The trade off of

preselecting plane-set normals means that we may not always create the optimal bounding

volume for each object.

To construct a hierarchy of bounding volumes, it is necessary to find a parent bounding

volume that bounds a set of child bounding volumes. With sets of slabs, the bounding

volume of two child volumes is simply defined by the minimum of the dnear
i and maximum

of the dfar
i values for each child.

In an animation, a moving 3D object represents a static 4D object4. It will be required

that a 4D bounding volume be created for objects in a scene. Glassner suggests the

following 12 plane set normals [1]: the principle planes




1

0

0

0




,




0

1

0

0




,




0

0

1

0




,




0

0

0

1




and the ‘diagonal’ planes

1

2




1

1

1

1




,
1

2




1

1

1

−1




,
1

2




1

1

−1

1




,
1

2




1

1

−1

−1




,

1

2




1

−1

1

1




,
1

2




1

−1

1

−1




,
1

2




1

−1

−1

1




,
1

2




1

−1

−1

−1




.

2.6.1 Computing bounding volumes

Consider the projection of an object onto the normal P̂i, shown as a dark line in Figure 2.3.

The extents of that projection are exactly dnear
i and dfar

i . Computing the bounding volume

of an object is simply the process of computing the extent of the projection of the object

against each plane set normal (remember that the projection of x against the normal P̂i is

the dot product x · P̂ T
i).

4A static 3D object also represents a static 4D object

16

Kay and Kajiay described methods of computing the bounding volume of several types

of objects, where the objects had static modelling transformations associated with them.

I will present a technique for computing the bounding volume for a general surface that

has a dynamic transformation associated with it.

A surface S can be defined by the set of points {x} constrained by

g(x) = 0,

t ∈ [T0, T1].
(2.5)

The 4D surface resulting from applying the modelling transformation M(t) to S is the

surface

S ′ ≡ M(t)




x

y

z

t




Using Equation (2.4), projecting S ′ onto P̂i gives the function f,

f




x

y

z

t




= P̂ T
i ·




M(t)




x

y

z

t







=
((

P̂x P̂y P̂z P̂t 1
)
·M(t)

)




x

y

z

t

1




=
(

A(t) B(t) C(t) P̂t P̂ T
i · T (t)

)




x

y

z

t

1




= A(t)x + B(t)y + C(t)z + D(t) (2.6)

Now, the function f constrained to the equations in (2.5) gives us the projection of

S ′ onto P̂i. The extent of this projection is exactly the extrema of f constrained to

17

(2.5). This type of problem is known as a constrained extrema problem [16], and can be

solved analytically using the method of Lagrange multipliers. However, the functions of t

in Equation (2.6) are arbitrarily complex, and the constrained extrema cannot be found

easily in practice.

The solution to this problem is to replace M(t) with ML(t), where each element of

ML(t) is a piecewise linear approximation of the corresponding element in M(t). There is

precedent for doing this linearisation [17]: Glassner did this in the implementation of his

space-time article, and Pixar’s Renderman assumes that motion is linear between frames.

Equation (2.6) is now only linear in t, and so can easily be solved using Lagrange

multipliers. This is described in Chapter 4.

2.6.2 Ray-volume intersection test

The intersection of a ray with a slab yields an interval along the ray. The point along the

ray R = au + b which intersects one of the planes in the slab is:

u =
di − P̂i · b

P̂i · a
. (2.7)

This equation can be used to find both unear and ufar. The endpoints may not be oriented

correctly; if the denominator in Equation (2.7) is negative, then the roles of the near and

far values must be reversed.

After computing the interval of intersection of the ray with each slab, we find the

intersection of these intervals. This intersection is simply the maximum of the near values

and the minimum of the far values. The ray misses the bounding volume if the intersection

of the intervals is null; that is, if unear
max > ufar

min.

There are two optimisations that can be performed on this process. One is that P̂i · b
and P̂i · a in Equation (2.7) can be computed just once for each ray. The other involves

detecting early on that the ray misses the volume before having to evaluate Equation (2.7)

for all the slabs.

2.7 Glassner’s space-time scheme

To efficiently ray trace animated scenes, Glassner proposed the space time ray tracing

concept: dynamic 3D objects are rendered as static 4D objects [1]. Glassner also presented

a hybrid hierarchical bounding volume/spatial subdivision technique as the acceleration

scheme for his implementation. This technique will be discussed in this section.

18

X
Y

Z
0

1

2

3

4

5

6

7

Figure 2.5: Subdivision and enumeration of a 3D box.

2.7.1 Building the hierarchy

The advantage of bounding volume techniques is that child volumes can be dismissed from

consideration if a ray misses the parent volume. Only if a ray intersects the parent volume

must child volumes be inspected. If volumes are allowed to overlap, then when inspecting

the child nodes, it is not sufficient to simply look at the nearest node, because it may not

contain the nearest object [15]. This indicates that it is hard to build ‘good’ hierarchies of

bounding volumes.

Space subdivision is also an advantageous technique. The hierarchy created by adaptive

subdivision is excellent: no cells at any given level overlap, and the subdivision is dense only

where the database is dense. However, rectangular prisms offer poor bounding volumes

compared to other types such sets of slabs.

The two techniques are complementary in the strengths and weaknesses: bounding

volumes offer poor hierarchies but tight bounds, while adaptive subdivision offers good

hierarchies but poor bounds. Glassner’s technique uses the excellent hierarchy generated

by space subdivision as a guide to build the tree of tight bounding volumes. The method

for generating the hierarchy follows this rule: “space subdivision down, bounding volumes

up”.

A bounding box is found for the scene, and subdivision begins. A subdivision criterion

(discussed below) is evaluated for the box and its contents. This determines if the box

needs to be subdivided. Figure 2.5 shows how a 3D box is subdivided into 8 smaller cells.

A 4D box is similarly subdivided into 16 cells.

The subdivision process is recursively repeated on each sub-box, until the scene has

been adequately subdivided. For each cell, a bounding volume is created that contains the

objects in that cell, within the bounds of that cell. This can be visualised by creating a

19

a b

d
c

Figure 2.6: (a) a scene with 9 objects. (b) adaptive subdivision applied to the scene. (c)

bounds for each object, within each cell. (d) final hierarchy built from bounds in (c) and

tree structure in (b).

bounding volume for the objects in the cell, then clipping the bound to lie within the cell.

See Figure 2.6 (taken from [1]).

As the subdivision recursion returns, a bound is built for each cell. This bound contains

the bounds of all the child cells of that cell. This results in a tree of bounding volumes that

has the non-overlapping hierarchy of spatial subdivision and the tight bounds of bounding

volume techniques.

Glassner used equal subdivision [18] to subdivide the scene, and sets of slabs as the

bounding volume. A hybrid subdivision technique was used; at upper levels, subdivision

occurred if there were more than 3 objects in a cell. After that, the cell was still divided if

the ratio of the volume enclosed by the objects to the volume of the cell was less the 0.3.

2.7.2 Ray/scene intersection

To find the intersection of a ray with the scene, the ray is tested first against the top

bounding volume. If the ray misses this bound, then it misses all the objects in the scene.

Otherwise, the ray is tested against the child volumes.

Because the volumes do not overlap, the ray can be tested against the first child volume

20

along its path. If the ray does not hit any objects in that bound, or misses the bound, then

the next volume along the path is checked. If the ray does not intersect any objects in the

child volumes along the path of the ray, then the ray does not intersect any objects in the

parent volume. If an intersection is found in a child volume, the point of intersection must

be tested to see if it lies inside the child cell. If it does not, then that intersection must be

discarded to avoid returning an intersection that is not the first along the ray.

2.7.3 Other details

One of the operations when subdividing the scene is to test if an object is inside a cell.

However, ray tracing is only concerned with the surfaces of an object. Therefore, an object

should be associated with a cell only if the surface if the object is in the cell [18].

An intersection must be rejected if it outside of the child cell that is being inspected.

This may mean that a ray is tested against the same object several times, as the ray moves

from cell to cell. To avoid computing the same intersection twice, a unique tag is associated

with each ray. If a ray does intersect an object but is rejected because the point does not lie

within the cell, then the tag and the intersection point are stored with the object. Before

testing a ray against an object, the ray’s tag is compared with the object’s, to see if the

test has already been performed.

2.8 Ray classification

This section will detail Arvo and Kirk’s ray classification technique [2], and will be based

on the ideas in Section 1.2.3.

The space of rays B × S2 is divided up into subsets E1, . . . , Em. A set of candidate

objects Ci is associated with each Ei. This candidate set is the complete set of objects

that rays in Ei might intersect.

Spherical co-ordinates are difficult and inefficient to work with, so Arvo and Kirk spec-

ified the direction of a ray with the direction cube.

2.8.1 Direction Cube

Consider the axis-aligned cube of side two centred at the origin of any ray. Any distinct

ray direction will correspond to a distinct point on the surface of the cube that is the

intersection of the ray and the cube, as shown in Figure 2.7.

21

+1

+1

-1

-1

+Z

+X

+Y

Ray

U

V

Figure 2.7: The direction cube.

The direction of a ray can now be specified by the 2D (u, v) point of intersection plus

which dominant axis the ray intersected. This becomes the space

D = [−1, 1]× [−1, 1]× {+X,−X, +Y,−Y, +Z,−Z}.

The 5-space of rays is now B ×D. A procedure for converting a direction vector in R3 to

a direction in D is given in [6].

A hypercube Ei ∈ B ×D now defines a beam in 3D which is an unbounded polyhedra

with at most nine faces. In general, Ei ∈ B×S2 does not define a beam that is polyhedral.

A polyhedral beam simplifies the process of classifying an object inside or outside a beam.

2.8.2 Arvo and Kirk’s algorithm

The ray classification algorithm consists of five processes:

• computing B, the bounding box for the scene.

• Hierarchy creation. Selecting the subsets E1, . . . , Em which subdivide B × D into

disjoint volumes.

• Candidate set creation. Computing Ci for each Ei.

• Ray classification. Computing the hypercube Ei that a given ray lies in, and returning

the candidate set for that hypercube.

• Candidate set processing. Given a ray and a candidate set, determining the closest

ray intersection.

22

Hierarchy creation

Binary space subdivision is used to create the hypercube hierarchy, each axis of B × D
being divided exactly in half at each level. After enough subdivision has occurred, any ray

can be classified to lie within a hypercube of arbitrarily small diameter.

To create an efficient hierarchy, subdivision should occur heavily in regions of B × D
that are dense in rays. However, the density characteristics of cast rays are determined as

the scene is being rendered, so this information is not available in a pre-processing step.

So instead, the hierarchy is created during rendering, using lazy evaluation.

Subdivision only occurs on demand, when the 5D co-ordinates of a ray are found to

lie within a hypercube Ei that is too large. There are two heuristics that determine when

subdivision terminates. One is that subdivision stops when the size of the candidate set

falls below a given threshold; this achieves the goal of finding a small number of objects

that a ray could possibly intersect. The second heuristic is to stop when the size of the

hypercube falls below a given size (or the hypercube is at a certain depth in the hierarchy);

this allows the cost of creating a candidate set to be amortized over may rays [2].

Candidate set creation

Given a hypercube, its candidate set is all the objects in the scene which intersect the set

of rays which define the hypercube. An object should be classified in the candidate set of

a hypercube if the object intersects the beam defined by the hypercube.

As an initial step, B ×D is subdivided along each of the six dominant axis. This gives

six hypercubes B× [−1, 1]× [−1, 1]. All the objects in the scene are associated as an initial

candidate set for each of these hypercubes.

For space efficiency, a candidate set is not created at every level in the hierarchy. When

a hypercube is subdivided along an axis, the resulting beams usually overlap substantially,

and are quite similar to the parent beam. Arvo and Kirk used the strategy of subdividing

along each of the five axes before creating a new candidate set. So, up to 25 = 32 hypercubes

may inherit their candidate set from the same ancestor, but significant memory savings

are gained. Also, due to lazy evaluation of the hierarchy, not all descendants are created.

Arvo and Kirk suggested three ways to classify whether an object was in a beam or

not. Each method performed this check using the objects bounding volume, instead of the

object itself. The method used in my implementation classifies the corners of the bound

against the planes that define the beam. The other methods they suggested were to use

linear programming, and to approximate the objects and beams with spheres and cones,

23

respectively.

Ray classification

The dominant axis of a ray is the axis corresponding to the co-ordinate of the direction

vector with the largest absolute magnitude. To find the hypercube Ei associated with a

particular ray, the initial hypercube B × [−1, 1] × [−1, 1] associated with the dominant

axis of the ray is used as a starting point. That hypercube is the top of the hierarchy, and

is traversed to find Ei. This yields the candidate set Ci. The process of traversing the

hierarchy may also invoke the lazy evaluation of parts of it.

Arvo and Kirk noted that a particular generation of rays are likely to be classified to the

same hypercube. This is because of coherency : for example, primary rays all have the same

origin and similar direction. To exploit this coherency, the last hypercube referenced in

each generation of rays is cached. New rays are first checked against the cache. Only if the

ray is not associated with the hypercube in the cache is the hierarchy traversed. Although

hierarchy traversal is very efficient, the cache check only requires ten comparisons.

Candidate set processing

Naively, a candidate set could be searched exhaustively for the closest intersection. Note

that all rays in a beam share the same dominant axis. Objects in a candidate set can be

sorted along their minimum extent along this axis. By processing the objects in ascending

order, the tail of the list can be dismissed if an object is reached whose entire extent is

beyond a known intersection.

The sorting of the objects can be done once for each dominant axis, during the initial

subdivision. Since each child hypercube has the same dominant axis as its parent, it can

inherit the correct order.

2.8.3 Five dimensional adaptive subdivision

One of the drawbacks with ray classification is that two parameters must be supplied with

the scene to control the creation of the hierarchy. Simiakakis presented a method called

Five dimensional Adaptive Subdivision (FAS) where these parameters are automatically

computed by the ray tracer [8].

If a hierarchy is too deep, then too much time will be spent in hierarchy traversal.

However, the candidate sets for a shallow hierarchy are very large, causing too much time

24

to be spent in candidate set processing. This identifies two competing factors in hierarchy

creation.

Simiakakis developed some expressions that tried to balance these factors. Statistics

about the hierarchy were gathered as the program was running. Every 10 scan lines

these statistics were used to adjust the parameter controlling the maximum tree depth.

Simiakakis found that rendering time was relatively unaffected by the minimum candidate

set size parameter; a value of 6 to 8 was optimal for most scenes.

Simiakakis also uncovered some other interesting results. The hypercube cache hit rate

is very high, at about 60% to 90%. He also suggests that some of the results in Arvo

and Kirk’s article [2] cannot be correct unless some other technique was also used, such

as a bounding volume hierarchy. Speer states that this “clouds the issue of data-structure

culling efficiency” [19]. In [6], Arvo and Kirk mention that ”it is also possible to use object

hierarchies for the efficient creation of candidate lists”.

The memory use of ray classification is very high. Simiakakis presents some methods

for reducing this memory requirement, by using more memory efficient data structures,

and by pruning not-recently-used branches of the tree when memory runs out.

2.9 Space time ray classification

Glassner extended traditional 3D hierarchical bounding volumes by adding an extra di-

mension that represented time. Ray classification can be extended in a similar and natural

way. As well as having a origin and direction, a ray can also have a time. The space of

rays now becomes B × [T0, T1]×D, which is a 6 dimensional space.

Arvo and Kirk’s algorithm works in space time with little change. Binary subdivision

now occurs along six axes instead of five, and beams are tested against the 4D bounds of

objects.

These are the only changes that need to be made to Arvo and Kirk’s algorithm, but

other changes can be made. It is possible to implement a 6D version of Simiakakis’ FAS,

to gain automatic tree depth control. However, the measurements that need to be taken

to implement FAS are very complex, and such an implementation is beyond the scope of

this project. Instead, a minimum candidate set size of 6 and a maximum tree depth of 5

was used, as suggested by Simiakakis.

25

2.9.1 Smart T division

Consider a beam Ei that needs to be subdivided. Normally, subdivision would occur along

each axis. If the beam does not contain any moving objects, then the 25 = 32 subdivisions

on either side of the T axis will be exactly the same. To save on the number of subdivisions

that occur, and hence the size of the hierarchy, the T axis is only subdivided if the candidate

set Ci for Ei contains moving objects.

This means that parts of the scene that remain static will have a smaller hierarchy,

and require less memory. There should also be more cache hits in that region; since the

hierarchy is smaller there will be higher probability of consecutive rays lying in the same

beam.

2.9.2 Pruning

FAS uses a memory saving scheme called pruning. If memory runs out, then a section of the

hierarchy that hasn’t been used lately is deleted. However, it is possible that the deleted

part of the hierarchy will need to be recreated later, doubling up on some calculations. The

pruning method I present here only prunes those parts of the hierarchy that are guaranteed

never to be used again.

Once a frame has been rendered, the renderer continues on to render consecutive frames.

If frame i, which is over the interval [ti, ti+1), has been completed, then no more rays that

have a time component less than ti+1 will be traced. Therefore, it is safe to prune those

parts of the tree that lie wholly within the interval [T0, ti+1). This pruning can happen at

the end of each frame.

Since past parts of the hierarchy are deleted, and future parts have not been created

yet due to lazy evaluation, then the total memory being used at any particular time will

be approximately equal to the amount actually needed for that time interval. This means

that the memory requirements for a scene will be independent of its duration.

26

Chapter 3

Design

This chapter gives a high level look at the design an implementation of the ray tracer built

for this thesis.

There are two main reasons that an implementation is necessary to conduct the in-

vestigation that is the aim of this thesis. The most obvious is so that empirical results

about the performance of both efficiency schemes can be gathered. However, building a

ray tracer is also useful because it identifies the implementation issues that aren’t obvious

from the presented theory or literature. These issues are discussed in detail in Chapter 4.

3.1 Requirements

The requirements of the implementation are as follows:

• Produce ray traced animations.

• The program is primarily being used to test the spatial search algorithms. The

algorithm that the program uses should be able to be changed or “plug-and-played”

easily.

• Be able to gather a useful range of testing parameters (testing is discussed in Chap-

ter 5).

• In view of obtaining some measure of photorealism, a range of object primitives and

other important graphical effects should be supported.

• Provide an easy method for specifying the contents of a scene.

27

• An important requirement is that the implementation be efficient. This will influence

the design, as well as decisions such as programming language.

• Portability; the program will be developed on a Sun Solaris system, but the testing

will be performed on an SGI IRIX system.

3.2 Analysis of requirements

This section looks at the requirements in light of forming them into an implementation.

Firstly, complete photorealism must be compromised; it is beyond the scope of this

project to create an industry quality photorealistic renderer. The advanced features that

are supported are motion blur, anti-aliasing and the possibility of an arbitrary amount of

primitive types1.

Traditionally, modelling is supported by associating a modelling transformation M

with an object (as described in Chapter 2). Animation can be supported by associating a

dynamic transformation M(t) with animated objects.

The program can be designed in such a way that it is modular, allowing different

components to be changed or swapped with no change to the rest of the system. However,

it is also important to be able to collect statistics, irrespective of what modules are currently

“plugged” in.

3.3 Design

Ray tracing programs are commonly described using a functional model, but a very elegant

object-oriented description is used for a particular subset of the system [20].

The main function of a ray tracing system is to evaluate the (approximation to the)

rendering equation for each primary ray (Figure 3.1).

• The Camera module generates primary rays. These are passed to the Kernel, which

returns the colour found by the rendering equation.

• The Kernel calls the Object Manager to find the closest intersection point x′, given

the ray R. The Kernel then calls the Shader to evaluate the rendering equation.

1Though, only spheres and polygons were implemented.

28

Shader

Camera

Kernel
Object_Manager

Trace(Ray) Intersect(Ray)

Shade(x,x’)

Figure 3.1: The modules that evaluate the rendering equation. Arrows indicate function

calls.

• While computing evaluating the rendering equation, the Shader may need to recur-

sively trace more rays.

• The role of the Object Manager is to store all the objects and to (hopefully efficiently)

search for the closet intersection point of any given ray.

The Kernel’s role is to manage the interaction of the other modules, and to collect statistics

about the performance of the system.

Figure 3.1 describes the “inner loop” of a ray tracer. The system as a whole operates

as in Figure 3.2:

• When the program is started, the Kernel calls the Scene Specification module, which

defines the scene. This is a user written module that uses an API provided by the

kernel for the adding of objects, light sources and a camera, plus any other relevant

initialisation information.

• Once the scene has been specified, the list of objects are passed to the Object Man-

ager, which performs any pre-processing that is required.

• The Kernel then repeatedly calls the Camera module to render each frame.

A polymorphic object oriented model is used to facilitate modelling, animation and an

arbitrary number of primitive types (Figure 3.3). The “Object” class represents a primitive

in the scene. It presents the following methods:

• intersect(Ray): determines if the ray intersects this object. Returns the u value of

the intersection if an intersection occurs.

29

Kernel

Camera

Object_Manager

Scene_Spec

Create Scene

Add Object

Add Light

Add Camera

Render frame i

Init.

Figure 3.2: The top-level diagram.

Sphere Polygon T_Transformed
M(t) : T_Matrix

Object

Transformed
M : Matrix

Figure 3.3: The “object” (primitive) object model.

• aux info(Intersect Info): returns shading information (such as the surface nor-

mal) for a previously computed intersection with this object.

• compute bound(): computes the bounding volume for this object.

The intersect() routine is used by the Object Manager to test rays against objects.

Once the closest intersection has been found, then the Shader uses aux info() to find the

normal. This way, the normal is only computed for the intersection point that needs to be

shaded.

An abituary number of primitives can be implemented by creating the appropriate

subclasses from Object. Static and dynamic modelling is supported through subclasses of

Object. The methods for these classes convert world co-ordinates to local before passing

the request on to its child object.

30

3.4 Implementation

The program was written in C++ in a Solaris environment at Macquarie University, and

recompiled and run (for testing purposes) under IRIX on the SGI Power Challenge at the

NSW Centre for Parallel Computing 2. C++ was used as the programming language because

it offers object oriented features as well as ease of code hand-optimising.

Each time the program is run, the user may want to use different Object Manager

and Scene Specification modules. To automate this process, a script file was created that

compiles the user supplied Scene Specification source file, and links this with the desired

Object Manager and the rest of the program, to produce an executable. The program is

then run, and the testing output is recorded and saved.

The Whitted shader [21] was used to approximate the rendering equation. To shade a

point, this technique traces one shadow ray for each light source, one reflection ray, and

one transparent ray (if the object is transparent).

All the source code for the ray tracer is given in Appendix A.

2At the Parallel computing and Visualisation Laboratory

31

Chapter 4

Implementation Issues

Chapter 2 offers a fairly comprehensive review of the literature relevant to this thesis.

Most of the ray tracing literature offers the theoretical basis for the method/algorithm

being presented; then gives the results of an implementation of the method, without much

treatment of the implementation itself.

This lack of implementation detail may be because the theory presented itself is imple-

mentation oriented, and implementation is a simple extension of the presented material.

However, I found that there were important, non-trivial implementation issues that were

never mentioned in the literature. This chapter outlines these issues, and other issues that

arise with the methods I have presented, and details my solutions to them.

4.1 Linearisation of motion

Computing the 4D bounding volume of an animated object involves finding the constrained

global extrema of f
((

x y z t
)T

)
in Equation (2.6). However, the functions of t in

this equation may be arbitrarily complex in general, and no closed form solution to find

the extrema exists.

The functions of t arise from the product P̂i ·M(t), where P̂i has real valued entries. If

it is known that the entries of M(t) are linear in t, then P̂i ·M(t) will also be linear in t,

as will f . Similarly, if the elements of M(t) are piecewise linear functions of t, then f will

32

be piecewise linear in t too. For example,

f(x) =





f1(x) T0 ≤ t < t1
...

fn(x) tn ≤ t ≤ T1

The extrema of f are then simply

max (f) = max
i=1...n

{max (fi)}

and

min (f) = min
i=1...n

{min (fi)},
and it will be shown how these extrema can be computed for spheres.

To get f in this form, M(t) is replaced by ML(t) for each object, where the elements

of ML(t) are piecewise approximations of the elements in M(t). To linearise each element

of M(t), the interval [T0, T1] is uniformly divided into n smaller intervals. Any value of

n could be used, higher values of n corresponds to a closer approximation. To find n,

I used the expression n = #frames × seg factor, where seg factor is supplied by the

user. This puts the quality of the linear approximation in the hand of the user. A value of

seg factor between 4 and 8 sufficed for scenes with very complex movement. A value of

1 means that motion is linear between frames.

4.1.1 Computing the extrema of a sphere

.

To compute the bounds of a sphere, g in Equation (2.5) becomes

g(x) = (x− x0)
2 + (y − y0)

2 + (z − z0)
2 − r2 = 0. (4.1)

The method of Lagrange multipliers [16] tells us that the extrema will occur at x when

∇f(x) = λ∇g(x). Remembering that A(t), B(t), C(t) and D(t)1 in Equation (2.5) are

linear in t, we get 


A(t)

B(t)

C(t)

a0x + b0y + c0z + d0




= λ




2x− 2x0

2y − 2y0

2z − 2z0

0




(4.2)

1These have the form A(t) = a0t + a1.

33

which gives

x− x0 = A(t)
2λ

y − y0 = B(t)
2λ

z − z0 = C(t)
2λ

. (4.3)

Substituting (4.3) into (4.1) gives

A(t)2

4λ2
+

B(t)2

4λ2
+

B(t)2

4λ2
− r2 = 0

A(t)2 + B(t)2 + C(t)2 = 4λ2r2

λ = ± 1

2r

√
A(t)2 + B(t)2 + C(t)2. (4.4)

Substituting (4.3) into the last row in (4.2) gives

a0

(
A(t)

2λ
+ x0

)
+ b0

(
B(t)

2λ
+ y0

)
+ c0

(
C(t)

2λ
+ z0

)
+ d0 = 0

1

2λ
(aoA(t) + b0B(t) + c0C(t)) + a0x + b0y + c0z + d0 = 0

and since a0x + b0y + c0z + d0 = 0 from (4.2),

1

2λ
(aoA(t) + b0B(t) + c0C(t)) = 0

and λ 6= 0 from (4.3), the extrema for f occur when

aoA(t) + b0B(t) + c0C(t) = 0

or, solving for t, when

t = −a0a1 + b0b1 + c0c1

(a2
0 + b2

0 + c0)
2 . (4.5)

Given t, both values of λ can be found by (4.4), yielding two pairs
(

xa, ya, za, t
)T

and
(

xb, yb, zb, t
)T

from (4.3). Substituting these pairs into f gives the extrema of f .

In (4.5), it could be the case that a0 = b0 = c0 = 0. But this means that A(t), B(t) and

C(t) are constants. Therefore, from (4.2), d0 = 0, and (4.4) gives λ = ± 1
2r

√
a2

1 + b2
1 + c2

1.

From this we can find pairs from (4.3) and extrema for f .

4.2 Box/surface testing in Glassner’s method

As described in Section 2.7, Glassner builds a nested hierarchy of 4D bounding volumes

to speed up the spatial search. 4D spatial subdivision is used to guild the building of

34

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

cba

Figure 4.1: Classification of a sphere and a cell. None of the surface is within the cell in

(a) or (c), only (b) classifies the surface within the cell.

the hierarchy. A fundamental operation that needs to be performed when doing spatial

subdivision is to test whether the surface2 of an object is inside a particular cell. This is

shown in Figure 4.1.

Consider an object that has an associated modelling transformation M (this is not

even a dynamic transformation). To classify the surface of the object against the cell,

the cell could be transformed to local co-ordinates. Given the from of M , an axis aligned

rectangular cell in world co-ordinates will be transformed to a parallelepiped in local co-

ordinates.

To classify a polygon against such a parallelepiped, a linear transformation L is found

that transforms the parallelepiped to a the unit cube centred at the origin, and transforms

the polygon to some other polygon. L can be found by considering the transformation as

a change of basis. Voorhies [22] presents a method that classifies the surface of a triangle

against the unit cube centred on the origin. A polygon can trivially decomposed into

triangles, as in Figure 4.2. If any of the triangles are in the cell, then the the polygon is in

the cell. This method is sound in theory, however, my implementation did not consistently

classify polygons correctly. I believe that this is because of floating point truncation and

round-off errors that build up in the application of the modelling transformation and then

the change of basis.

Arvo [23] presents a method that classifies the surface of an axis-aligned ellipsoid against

an axis-aligned cell. A sphere could be classified against a parallelepiped by transforming

the parallelepiped to an axis-aligned cell, but the sphere could be transformed to a non-

axis-aligned ellipsoid, which Arvo’s method does not handle. I was unable to come up

with a solution to this problem, so Arvo’s method is used as is, and wrongly classifies some

spheres. There are two points of interest here; one is that this seems a serious problem, but

2Rays only intersect surfaces, not volumes, so a ray may only intersect an object within a cell if the

surface of that object is within the cell.

35

Figure 4.2: A polygon decomposed into triangles.

Figure 4.3: Object/beam classification (2D example). An object is classified as inside the

beam since it has points inside all half-spaces defining the beam, even though the object

is not in the beam itself.

no reference is made to it in any of the subdivision literature that I read. The other point

is that this is a hard problem, and dynamic transformations haven’t even been considered

yet!

4.3 Object/beam classification

To classify an object against a beam in ray classification, the corners of the object’s bound-

ing volume are tested against the planes that define the beam. This is a simple test, but

not rigorous; it may classify a bound as in the beam when it is in two of the planes, but

not in the actual beam, as in Figure 4.3. Theoretically this classification is not erroneous;

it never classifies an object outside the beam when it is actually inside. However, my

implementation does occasionally missclassify objects against beams. I believe this to be

a combination of machine truncation errors and some buggy code.

36

4.4 Comments

Linearising the description of movement is an elegant solution to the problem of creating

4D bounds for moving objects. The linearised movement will only be noticeable with

objects that move in a very nonlinear way within one frame, for which the approximation

level can be adjusted accordingly. Also, objects that move greatly within one frame exhibit

extreme motion blur, so that it is hard to see what that object is doing anyway; in this

way, linearisation does not significantly stand in the way of the quest for photorealism.

One way solve the problem of surface/cell classification is to relax the strength of the

test. Instead of erroneously classifying a surface outside when it is actually in, a different

algorithm might be developed that sometimes classifies an object in when it is out, but

always classifies it as in when it is in. Still, there is no indication of such an algorithm in

the literature, but such an algorithm would probably be easier to develop than the exact

solution.

37

Chapter 5

Empirical investigation

The aim of this project is to investigate two spatial search methods for ray tracing. Since

the aim of these methods is to improve on the linear time complexity of an exhaustive

search, it is important to look at the efficiency of the methods as part of the investigation.

5.1 Testing

What to test

As with a search on an array, the number of comparisons performed is the measure of

complexity for a spatial search. In ray tracing, the comparison is a ray/object intersec-

tion test. The number of ray/object intersection tests can be used to indicate how much

improvement over an exhaustive search has been achieved, and which method offers the

bigger improvement.

Another indication of efficiency is the time it takes to render an animation. A particular

search scheme may offer much better than linear time complexity, but pays for this with

a terribly expensive pre-processing step. Ideally, run time would be the best indication of

efficiency; however, the run time is highly dependent upon how well the program has been

optimised. Although every attempt was made while programming to ensure an efficient

implementation, a working, finished program was more important than an perfectly efficient

but unfinished one.

I have used the following areas of interest in deciding on what to test for.

• Time efficiency. The number of ray/object intersections shows how good the search

scheme is, but balancing this, the rendering time indicates the true cost of the scheme.

38

• Memory efficiency. Memory use is an important issue in both Glassner’s method

and Arvo and Kirk’s ray classification.

• Algorithm performance. It is useful to know the details of all the tasks the program

is performing. For example, the number of frames in the animation, the number of

objects, or the proportion of primary/reflection/transmission and shadow rays. It is

also useful to know the details of the search algorithms, like the cache hit rate in my

method, or the depth of the hierarchy in Glassner’s.

How to test

To collect the results of the testing, the program must be used to render some scenes.

The types of scenes that are used for testing are important; the test scenes should reflect

qualities that are common to the types of scenes that are rendered by real photo-realistic

renderers, and the scenes should not be tailored to suit the advantages of any of the

particular search methods.

Eric Haines [24] proposed standard set of static scenes, called the Standard Procedural

Database (SPD), that could be used to test the performance of renderers. This set of scenes

attempted to encapsulate a range of image attributes, including the types of primitives

used, the shading complexity (number of shadows, reflections and transparent objects)

and the placement of objects in the scene.

However, a set of scenes are needed that encapsulates the range of animated scenes

commonly rendered. Haines and I [25] determined the following attributes for the possible

types of animated scenes:

• A moving camera through a fixed scene; for example, an architectural work through.

• Localised object movement; a particle spinning or the hands of a clock moving.

• Wide ranging movements; a spaceship/car moving around the scene

• A mixture of the above.

Haines [25] also noted that the SPD does not have fringe objects; objects that are not a

main part of the scene, but just sit at the edges.

The following animations were used as the test scenes:

39

• Night City. The camera swoops down along a street of a “virtual” city. This is

mainly a “moving camera, fixed scene” animation; however, it also has some fringe

objects, representing flowing traffic.

• Mountains. This is an adaptation from the SPD. Crystal balls move around in front

of a fractal mountain. This is a fixed scene, with some small localised movement.

This scene has a large transparent component.

• Boldly. The starship Enterprise races around the scene, with two very complex

geometric fringe objects, taken from the SPD. This is an example of wide ranging

movement with complex fringe objects.

• Party-cools. Ten coloured spheres move around the scene randomly. This scene has

complex, wide ranging movement, with no fringe objects.

It should be noted that the version of “Boldly” that was used as a test scene accidently

differs slightly from the one I designed; the Enterprise moves too fast, and appears as just

a blur. I could not change it to more realistic motion since I discovered discrepancy too

late. However, this scene is still as useful test scene, it is now an extreme example of fast,

wide ranging movement.

5.2 Results

Table 5.1 shows the statistics for the various scenes. All scenes were rendered once for

each search method, at 12.5 frames per second, with motion blur and anti-aliasing using

3× 3 jittered super-sampling [26]. The frames were then colour quantised to a 256 colour

palette and stored as an animation. See Appendix A on how to obtain these animations.

The results of the test scenes when run using an exhaustive search are given in Table 5.2.

Even though an exhaustive search for the closest intersection point was used, each object

was surrounded with a bounding volume; the ray was first tested against the bound, and

then only tested against the object if the ray intersected the bound. This same bounding

test was also used with the other search methods. The “Ray/BV tests” figure indicates

the number of ray/object comparisons; “Ray/Object tests” indicates how many of these

comparisons actually required a test with the underlying object, and not just the bound.

Table 5.3 shows the results for Glassner’s method. For the “Night City” animation,

the program failed to finish, as it was stopped after running for 5 hours and not having

40

finished the pre-processing step. The time taken for the Object Manager to initialise is

also given; this is the time taken to build the space-time hierarchical bounding volumes.

The results for my space time ray classification method are given in Table 5.4. The

Object Manager initialisation time was always less than 1 second for my method. The

performance of the classification cache is also given. Table 5.5 gives a comparison between

the two methods. The figures reported are the ratio between my method and Glassner’s;

values less than one indicate that mine was faster.

Sample frames from the animations are given in Figures 5.1 to 5.4. Memory usage is

given in Table 5.6. Actual memory usage will depend on the efficiency of the structures

used, and no attempt was made to optimise the size of the structures. Therefore, memory

usage is reported as the number of nodes used.

41

Animation #Rays ×103 P/R/T/S ×103 #Frames #Objects

Night City 169477 45000/28729/0/95748 125 401

Mountains 26773 8640/2517/5481/10134 24 516

Boldly 183587 135000/15451/0/33136 375 354

Party-cool 27890 27000/487/0/403 75 10

Table 5.1: Statistics about the test scenes (the number of rays is broken down into the

number of primary, reflection, transparent and shadow rays).

Animation Night City Mountains Boldly Party-cool

Ray/BV tests ×106 67960 13815 2208 278

Ray/Object tests ×106 453 106 518 83

Ray/Object hits ×106 249 246 447 49

Rendering time (sec) 19803 4180 23952 815

Table 5.2: Results using exhaustive search.

Animation Night City Mountains Boldly Party-cool

Ray/BV tests ×106 – 433 1687 408

Ray/Object tests ×106 – 93 293 158

Rendering time (sec) – 1324 6677 1469

OM init. time (sec) – 30 403 28

Table 5.3: Results using Glassner’s method.

Animation Night City Mountains Boldly Party-cool

Ray/BV tests ×106 1420 167 431 153

Ray/Object tests ×106 452 64 284 83

Rendering time (sec) 4269 656 4539 1119

Cache hit rate 71% 33% 88% 30%

Table 5.4: Results using my method.

Animation Night City Mountains Boldly Party-cool

Ray/BV tests – 0.38 0.25 0.37

Ray/Object tests – 0.68 0.96 0.52

Total Rendering time – 0.48 0.64 0.74

Table 5.5: Performance ratio of my method to Glassner’s.

42

Animation Night City Mountains Boldly Party-cool

Glassner’s – 299 185 2

Mine 779 542 1323 1529

Table 5.6: Memory required by the hierarchies. Figures represent number of nodes ×1000.

(a) (b)

Figure 5.1: The same two frames from “Night City”, using (a) exhaustive and (b) my

method. Notice that some of the polygons are missing in (b).

(a) (b)

Figure 5.2: Two consecutive frames from “Party-cool”. Note the motion blur on some of

the balls.

43

(a) (b)

(c)

Figure 5.3: The same frame from “Mountains”; the background can be seen through the

balls. Rendered using (a) exhaustive, (b) Glassner’s method, and (c) my method. Both

(b) and (c) show how some objects were misclassified.

44

(a) (b)

(c)

Figure 5.4: Frames from “Boldly”, with motion blur turned off so the ship can be seen.

(a) and (c) were rendered using the exhaustive method. (a) is the same frame as (c), but

(c) was rendered using my method. Note that in (c), the static objects were completely

misclassified.

45

Chapter 6

Discussion

This chapter discusses the results of the investigation that was the aim of this thesis. The

investigation has looked at both the theoretical and empirical characteristics of both ray

tracing efficiency schemes. In order to discuss the results, I will first present some criteria

on which to compare the two methods.

The central issue of both Glassner’s and my methods is to improve the efficiency of

creating ray traced animations, by improving the spatial search method used to find the

closest intersection of a ray and the scene. So most importantly, the fastest method is the

best method. However, the are some issues regarding the meaning of “faster”.

• Run time. The most intuitive meaning of “faster” is that the program runs in the

shortest time. However, the true quality of this measurement is influenced by the

quality of an implementation; for example, one method may run faster simply because

all the functions were inlinned.

• Number of comparisons. The efficiency of these methods stem from the fact that

they improve the spatial search; therefore, it is valuable to look at how much they

improve just the spatial search phase. Looking at the number of comparisons needed

in the search indicated the effectiveness of the search, irrespective of the optimisation

of the program.

Ray tracing’s approximation to the rendering equation is used to produce photorealistic

images. Photorealistic renderers often employ complicated techniques to achieve life-like

effects. Although it is beyond the scope of this project to produce an industry standard

photorealistic renderer, it is important to look at how robustly the efficiency methods can

handle these advanced features.

46

6.1 Theoretic comparison

This section will make a comparison of the efficiency methods based on the material pre-

sented in Chapter 2. Here is a point by point comparison of the major differences between

Glassner’s space time hierarchical bounding volumes and my space time ray classification

method:

Glassner’s Mine

• Nested hierarchies of bounding volumes

is a straight forward idea.

• Subdivision of ray space is initially a

complex idea.

• Hard to implement, due to the com-

plexity of surface/cell classification

(took 3 weeks to implement).

• Easier implementation; bounding vol-

ume/beam classification quite simple

(4 days to implement).

• Full hierarchy build as a pre-processing

step.

• Only parts of hierarchy needed are

build using lazy evaluation.

• Always divides along T axis. • Only divides along T axis if necessary.

• Stores all parts of the hierarchy for the

duration of the animation.

• Prunes unused parts of the hierarchy

These points indicate that space time ray classification holds many advantages. Glass-

ner’s method is difficult to implement because a surface/cell test is in general hard (Sec-

tion 4.2). Ray classification only requires one algorithm for testing a bound against a beam,

but Glassner’s method requires a different surface/cell technique for each primitive type.

This would make it hard to add complex photorealistic features, such as arbitrary object

deformations, to the space time hierarchy scheme. An alternative might be to change

the surface/cell test to, say, a bound/cell test. However, this may drastically change the

characteristics of Glassner’s method, since many more objects would be classified to a cell,

creating much bigger hierarchies. I believe that the need for a surface/cell test is an implicit

problem with Glassner’s technique.

Space time ray classification builds a smaller hierarchy using lazy evaluation and smart

T division, and theoretically has better memory requirements due to pruning. However,

it is quite possible to use lazy evaluation to build Glassner’s hierarchy. In fact, smart T

division and pruning can also be used. Comparing space time ray classification with such

an improved space time hierarchical technique would more accurately compare 3-space

subdivision with ray space subdivision.

47

6.2 Empirical comparison

Table 5.5 shows that space time ray classification is an efficiency improvement over Glass-

ner’s technique, in all categories. For scenes with localised movement, ray classification

was approximately 50% faster, and resulted in 62% less comparisons. For scenes with wide

ranging movement, ray classification was 26–36% faster, with 63–75% fewer comparisons.

Since Glassner’s method did not complete for the “Night City” animation, we can expect

that ray classification offers a substantial improvement for scenes where the camera moves

significantly.

It is interesting to note that there is up to twice as much improvement in the number

of comparisons compared with the improvement in rendering time. As would be expected,

as spatial search techniques become more efficient, the proportion of time spent doing the

search will decrease from the often quoted 95% [5].

Table 5.6 shows that ray classification uses much more memory than hierarchical bound-

ing volumes; almost 1000 times more for the “Party-cool” animation. Ray classification

divides each axis of R3 × T × S2, which results in 26 = 64 (or 25 = 32 on nodes that use

smart T division) children for each node. On the other hand, Glassner’s method divides

R3 × T , which results in 24 = 16 children per node. This indicates that ray classification

inherently has a higher memory overhead, by orders of magnitude.

The “moving camera” animation “Night City” has 401 objects, and results in a hierar-

chy of 779× 103 nodes; whereas “Party-cool”, a wide ranging movement animation, has 10

objects (a factor of 40 difference) but results in a hierarchy of 1529×103 nodes! Ray classi-

fication seems to perform much better when there is little wide ranging movement. These

results may also reflect the fact that “Night City” has mostly flat-edged objects, where

“Part-cool” has all highly curved ones. However, “Mountains” also has a significantly

curved component, but has a comparable memory usage to Glassner’s method.

6.3 Comparison summary

The following statements can be made, based upon the last two sections:

• Space time ray classification is significantly more efficient than space time hierarchical

bounding volumes, as Glassner presented it. This is expected from the theory, since

my method uses lazy evaluation and smart T division, and ray classification explicitly

takes ray direction into account when performing the spatial search.

48

• Ray classification has a much higher memory usage, due to the nature of its subdi-

vision.

• The effectiveness of using Glassner’s method in a photorealistic renderer is clouded by

the potential complexity of surface/cell classification. Space-time ray classification

offers a robust method for bound/beam classification, irrespective of the primitive

type.

6.4 Quality of work

I would like to make some comments regarding the quality of the work in this project, and

in the field. In 1992, Speer wrote [27]:

. . . that research on ray tracing for image synthesis had accelerated in recent

years: areas under active study now include ray tracing in data visualisation,

ray tracing for radiosity and parallel ray tracing, in addition to more familiar

ones like fast subdivision traversal, stochastic sampling and efficient intersection

culling.

However since then, things have changed. Regarding research into ray traced animation,

Haines wrote [25]

Actually, I’m pretty happy to see people still researching this area, as I think

we don’t really know that much about how to do it well. Some research has

been done, but there are so many other unexplored fronts that there hasn’t

been much concerted effort on ray tracing efficiency and animation since, like,

Glassner [1] and Jevans [28].

Figure 6.1 shows the distribution of articles over the last 30 years, taken from the “Ray

Tracing Bibliography” [29]. Research into ray tracing has steadily fallen since 1990. Very

little work has gone into ray traced animations since Glassner’s space time article; In fact,

I could find no further research into actual space-time ray tracing since Glassner’s article

in 1988.

I believe Glassner’s results with space time ray tracing, and my more efficient space

time ray classification indicate that there is still much valuable work to be done in this

area. Also, as far as I could determine, I was the first to suggest smart T dividing and to

49

Figure 6.1: Distribution of publication dates for references on ray tracing.

use pruning for previous frames, and the first to implement space time ray classification

(Arvo and Kirk suggested this but never implemented it).

One possible reason for the decline in research into ray tracing is that conventional

techniques have become advanced enough to offer many of the photorealistic effects that

ray tracing performs. It is my opinion, however, that there is still not enough known about

efficiency in ray tracing for it to be dismissed as too inefficient.

6.5 Further work

The most immediate area for further work is to implement lazy evaluation, smart T division

and pruning for Glassner’s method. Glassner suggested lazy evaluation as further work

in his article, but never followed it up. Lazy evaluation would remove the expensive pre-

processing step that reduces the effectiveness of this method.

It is not entirely clear what features a renderer should support to cover a wide range of

photorealistic features of industrial renderers. This is important, since adding sophisticated

features may restrict the efficiency scheme that can be used.

Simiakakis [8] discussed parallel implementations of his Five Dimensional Subdivision.

It would be worthwhile looking into how parallelism could be used for space time animation.

50

Chapter 7

Conclusion

The aim of this thesis was to investigate two methods for the efficient rendering of ray traced

animations; Glassner’s space time hierarchical bounding volume method and my space time

ray classification. The focus of the investigation was on theoretical and implementation

issues and empirical results.

Space time ray classification has many better features when compared with Glass-

ner’s method; including lazy evaluation, smart T division and past frame pruning. Using

Glassner’s method as-is, my technique renders up to 50% faster and uses around 70%

less comparisons in the spatial search. However, Glassner’s method could be extended to

include lazy evaluation, smart T division and pruning.

Space time ray classification is much more memory demanding than Glassner’s hier-

archical bounding volumes, because of the branching factor of the hierarchy it creates.

Even though my method uses two memory saving schemes, it still uses significantly more

memory.

The range of advanced photorealistic features a renderer supports is an important factor

for an efficiency scheme. Because of surface/cell classification, it is difficult to add features

to Glassner’s method. On the other hand, ray classification is largely independent on the

complexity of features supported.

Apart for the initial article into space time ray tracing, very little research has been

done into space time ray tracing, and I believe that I was the first to implement space time

ray classification, even though Arvo and Kirk suggested it. Also, the research interest in

ray tracing has continually fallen for the last five years, even though there is so much that

is not understood about efficiency in animated ray tracing.

51

Bibliography

[1] Andrew S. Glassner. Spacetime ray tracing for animation. IEEE Computer Graphics

and Applications, 8(2):60–70, March 1988.

[2] James Arvo and David Kirk. Fast ray tracing by ray classification. In Maureen C.

Stone, editor, Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21, pages

55–64, July 1987.

[3] George Simiakakis. Accelerating ray tracing and directional subdivision. Master’s

thesis, University of East Anglia, 1992.

[4] J. T. Kajiya. The rendering equation. In David C. Evans and Rusell J. Athay, editors,

Computer Graphics (SIGGRAPH ’86 Proceedings), volume 20, pages 143–150, August

1986.

[5] Turner Whitted. An improved illumination model for shaded display. Communications

of the ACM, 23(6):343–349, June 1980.

[6] James Arvo and David Kirk. A survey of ray tracing acceleration techniques. In

Andrew S. Glassner, editor, An introduction to ray tracing, pages 201–262. Academic

Press, 1989.

[7] Steven M. Rubin and Turner Whitted. A 3-dimensional representation for fast ren-

dering of complex scenes. In Computer Graphics (SIGGRAPH ’80 Proceedings), vol-

ume 14, pages 110–116, July 1980.

[8] George Simiakakis. Accelerating Ray Tracing with Directional Subdivision and Parallel

Processing. PhD thesis, University of East Anglia, October 1995.

[9] Andrew S. Glassner, editor. An introduction to ray tracing. Academic Press, 1989.

52

[10] James D Foley, Andries van Dam, Steven K Feiner, and John F. Huges. Computer

Graphics Principles and Practice. Addison-Wesley Publishing Company, 1990.

[11] Pat Hanrahan. A survey of ray-surface intersecion algorithms. In Andrew S. Glassner,

editor, An introduction to ray tracing, pages 79–119. Academic Press, 1989.

[12] Alan Watt and Mark Watt. Advanced Animation and Rendering Techniques: theory

and practice. ACM Press, 1992.

[13] Walter F. Taylor. The Geometry of Computer Graphics. Wadsworth & Brooks/Cole,

1991.

[14] P. Shirley and C. Wang. Distribution ray tracing: Theory and practice. In Eurograph-

ics Workshop on Rendering, 1992.

[15] Timothy L. Kay and James T. Kajiya. Ray tracing complex scenes. In David C.

Evans and Rusell J. Athay, editors, Computer Graphics (SIGGRAPH ’86 Proceedings),

volume 20, pages 269–278, August 1986.

[16] Jerrold E. Marsden and Anthony J. Tromba. Vector Calculus. W.H. Freeman and

Company, thrid edition, 1988.

[17] Andrew Glassner. personal correspondence, 1996.

[18] Andrew S. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics

and Applications, 4(10):15–22, October 1984.

[19] L. Richard Speer. A new subdivision method for high-speed, memory efficient ray

shooting. Third Eurographics Workshop on Rendering, pages 45–60, May 1992.

[20] Paul S. Heckbert. Writing a ray tracer. In Andrew S. Glassner, editor, An introduction

to ray tracing, pages 263–293. Academic Press, 1989.

[21] Andrew S. Glassner. Surface physics for ray tracing. In Andrew S. Glassner, editor,

An introduction to ray tracing, pages 121–160. Academic Press, 1989.

[22] David B. Kirk, editor. Graphics Gems III. Academic Press, San Diego, 1992.

[23] Andrew S. Glassner, editor. Graphics Gems. Academic Press, 1990.

[24] Eric Haines. A proposal for standard graphics environments. IEEE Computer Graphics

and Applications, 7(11):3–5, November 1987.

53

[25] Eric Haines. personal correspondence, 1996.

[26] Robert L. Cook. Stochastic sampling and distributed ray tracing. In Andrew S.

Glassner, editor, An introduction to ray tracing, pages 161–199. Academic Press, 1989.

[27] L. Richard Speer. An updated cross-indexed guide to the ray-tracing literature. Com-

puter Graphics, 26(1):41–72, January 1992.

[28] David A. Jevans. Object space temporal coherence for ray tracing. In Proceedings of

Graphics Interface ’92, pages 176–183, May 1992.

[29] Alf-Christian Achilles. On the World Wide Web at http://bavi.unice.fr/Biblio-

/Graphics/ray.html.

54

Appendix A

Availability

This thesis was submitted as Technical Report C/TR96-08 to the Department of Comput-

ing at Macquarie University. A PostScript version of this report is available via anonymous

FTP at

ftp://ftp.mpce.mq.edu.au/pub/comp/techreports/

The source code for the program and all the animations generated are stored at

ftp://ftp.mpce.mq.edu.au/pub/comp/src/

The animations are stored using AutoDesk’s FLIC file format.

A compete listing of the source code follows.

55

